Quasicrystals ~ Extraterrestrial Advanced Technology Made With Human Intervention ?

Discussion in 'Ancient and Original Native and Tribal Prophecies' started by CULCULCAN, Nov 20, 2022.

  1. CULCULCAN

    CULCULCAN The Final Synthesis - isbn 978-0-9939480-0-8 Staff Member

    Messages:
    55,226
    Some quasicrystals can only be made with human intervention. Therefore to find it in a meteorite sustains the probability of extraterrestrial advanced technology
    ault%2Ffiles%2Ffield%2Fimage%2FMeteorite-sml.&fb_obo=1&utld=ancient-origins.net&stp=c0.5000x0.


    ANCIENT-ORIGINS.NET
    Meteorite Found in Siberia Contains Naturally Impossible Crystal | Ancient Origins (ancient-origins.net)
    https://www.ancient-origins.net/new...r0yi4R2GJot_lUwS9Ori6dNlNTpgi2Qgd9S3IftgPeS2k

    Meteorite Found in Siberia Contains Naturally Impossible Crystal

    Meteorite-sml.
    UPDATED 23 JULY, 2019 - 08:05 NATHAN FALDE
    Meteorite Found in Siberia Contains Naturally Impossible Crystal

    PRINT
    In 2009, scientists made a groundbreaking discovery that was ultimately traced to a remote corner of the world. In a box obtained from the Italian Museum of Natural History in Florence, Italy, they found a small grain of extraterrestrial mineral that was formed shortly after the birth of our solar system, 4.5 billion years ago. The mineral came from an area near the Koryak Mountains in eastern Siberia, and was delivered to Earth by an object known as the Khatyrka meteorite. The latter was discovered only after researchers returned to the area in search of more exotic minerals in 2011.





    The Mysterious Man from Taured – Evidence for a Parallel Universe?




    This new rock has been designated as a quasicrystal, in recognition of its unique structural properties. A quasicrystal looks like a normal crystal on the outside, but on the inside it is noticeably different. While the atoms in a pure crystal are arranged in constantly repeating patterns, the atomic lattices inside the quasicrystal are both ordered and diverse, displaying a range of shapes never before seen in a natural substance.
    More than 100 synthetic versions of these minerals have been produced in laboratories, between 1982 and the present day. Until these experiments, such a form of matter had never been seen before, and in the past had been believed to be theoretically impossible according to accepted ideas about the laws of nature. Previously the only thing ever found were crystals, with their rigidly repetitive patterns, and so-called normal solids, which are comprised of atoms arranged in no particular order.
    More From The Web


    A Scientific Detective Story

    Even after quasicrystals were created in a laboratory, their existence in nature was doubted. But one of the people who’d predicted that quasicrystals might actually be makeable, Princeton University theoretical physicist Paul Steinhardt, was determined to leave no stone unturned (figuratively and literally) in his search for quasicrystals formed by the processes of nature .
    It was Steinhardt who was responsible for finding the quasicrystal sample in the box from the Italian museum, with assistance from an Italian geologist named Luca Bindi. Steinhardt formed a team of scientists to study this intriguing mineral, and they eventually confirmed the unique structure of the tiny rock from one of the planet’s remotest areas.
    To uncover the true origin of the quasicrystal sample, the team of scientists investigated numerous possibilities. They tried to develop a realistic scenario explaining how the quasicrystal could have formed naturally on Earth. But in the end, they were able to establish with near 100-percent certainty that it had arrived on Earth from somewhere else in the solar system.
    Steinhardt’s analysis showed the mineral was embedded in another mineral known as stishovite. This rock comes from meteorites, and its encirclement of the quasicrsytal meant both minerals had been formed by a high-pressure process at approximately the same time inside a meteorite that eventually landed in the wilds of Siberia. Further cementing their conclusion was the discovery that the ratio of oxygen isotopes inside the quasicrystal was not consistent with ratios found on Earth, but was instead explainable only if the quasicrystal had been created off-planet.
    “The finding is important evidence that quasicrystals can form in nature under astrophysical conditions, and provides evidence that this phase of matter can remain stable over billions of years,” Steinhardt explained after announcing the results of his team’s analysis.
    Not content with finding just one quasicrystal, Steinhardt and associates made their own trip to Siberia in 2011. After searching the Kamchatka Peninsula area near the Koryak Mountains, they were able to obtain a fresh sample of rock from the Khatyrka meteorite, and inside they eventually found two more quasicrystals , each of which had a unique molecular structure. Since quasicrystals are extremely small the hunt for them is a bit like searching for a needle in a haystack, and the most recently discovered sample was only uncovered in 2016, five years after the meteorite sample was removed from Siberia.
    All three quasicrystals were found to contain a mixture of aluminum, copper and iron. The third quasicrystal discovered has a special structure that has yet to be created in synthetic form in a laboratory, highlighting nature’s persistent habit of producing more novelty than we expect or imagine to be possible.
    As for the source of the naturally-formed quasicrystals, Steinhardt speculates that a violent collision between two asteroids in the early days of the solar system may have created these remarkable minerals. Close study of their characteristics, and other materials in the Khatyrka meteorite sample retrieved, could help physicists and geologists determine more about what conditions were like when the solar system was in its formative stage.
    Quasicrystals possess an interesting package of characteristics. They are extremely hard, but they are also slippery to the touch and do not generate much friction.
    So far, the search for useful applications has yielded only a few results, even though researchers have been working with synthetic samples for more than three decades. Quasicrystal has been used to harden the steel from which surgical and other medical instruments are manufactured, and Steinhardt himself invented a quasicrystal-lined frying pan that has some impressive no-stick qualities. But as of now, that’s about it.
    Nevertheless, hope springs eternal.
    As explained by Paul Asimov, a quasicrystal researcher from the California Institute of Technology, scientists working in this area hope “to find new quasicrystalline alloys that might have some use, because none of the ones discovered so far really have any use other than ‘wow, this is cool. But its not out of the question that someone will find a really good use for quasicrystals one of these days.”
    Treasure Troves from the Sky

    It is estimated that as much as 100 tonnes of space debris will enter the Earth’s atmosphere each and every day. Most of it will burn up, but a few thousand kilograms of material will actually make it to the Earth’s surface annually.
    Few would ever guess that we’re constantly being showered by rocks and dust from the solar system, only a small portion of which will ever be seen or identified.
    Which of course bings up a question. Are there other exotic, extraterrestrial forms of matter delivered by meteorites laying around in remote or distant locations, just waiting to be discovered by intrepid scientific explorers? The possibility cannot be ruled out.
    At one time, the existence of substances like quasicrystals was considered impossible Other impossible leftovers from ancient times may have landed here as well, brought in on the wings of fiery, glowing chariots of rock. If and when they’re discovered, they may force us to expand our conceptions about the nature of matter.
    Top image: An iron meteorite. Credit: Vladimir / Adobe Stock
    By Nathan Falde
     
  2. CULCULCAN

    CULCULCAN The Final Synthesis - isbn 978-0-9939480-0-8 Staff Member

    Messages:
    55,226
    Third-ever natural quasicrystal found in Siberian meteorite


    EARTH 8 December 2016
    EARTH 8 December 2016
    By Leah Crane

    srep38117-f1-1.
    Quasicrystals provide a new perspective on solids
    Luca Bindi, Chaney Lin, Chi Ma & Paul J. Steinhardt

    There’s more than one way to cook a quasicrystal. For the first time, a new kind of this weird, rule-breaking solid has been found in nature without an identical compound having first been made in the lab.
    Paul Steinhardt at Princeton University has doggedly hunted for quasicrystals since he predicted their existence in the early 1980s. Before then, we only knew of two types of solids: crystals, in which every atom is arranged neatly in a repeating lattice, and amorphous solids, which have no such order. Quasicrystals are almost crystals, but they break the rules: their neat patterns never exactly repeat.
    The first synthetic quasicrystal was grown in the lab in 1982, and there are now more than 100 types of lab-grown ones. But this is only the third type found in nature – all three from the Khatyrka meteorite from north-eastern Russia since 2009. The approximate composition of the first two had been created in a lab beforehand.

    Finding a fresh example in nature allows us to continue writing a recipe for creating new quasicrystals from scratch, says Steinhardt. For one thing, all three seem to require metallic aluminium, which naturally bonds to oxygen except in this meteorite.
    The new quasicrystal has a similar molecular structure to the first one, but slightly different chemistry: both are made of aluminium, copper and iron, but in different proportions. Steinhardt and his team had collected samples of the Khatyrka meteorite in 2011, and found the new material in a chip less than half a millimetre across.
    “It’s hard to look systematically for these things, because we’re talking about grains which are typically tens, or maybe a few hundred microns, in size, and you have to look through a gigantic meteorite at each little grain that size,” says Steinhardt. “Unless you were completely crazy like we were, you wouldn’t be doing that.”

    Steinhardt and his collaborators hope that this discovery will lead to further systematic searches. Now that we know we can find novel quasicrystals in nature, it might be worth the effort.
    Violent impact?

    In looking to nature, Steinhardt aimed to learn more about how quasicrystals form. Based on the structure and melt patterns in the Khatyrka meteorite, he and his team believe that the quasicrystals formed through some sort of violent impact in space, such as a collision between two asteroids. Studying the natural quasicrystals and the meteorite they came from in detail could teach us about the environment in the early solar system that led to their existence.
    Finding new quasicrystals in nature could also pave the way towards fresh methods for producing them in the lab. With the composition of this new quasicrystal in hand, it should be easy to synthesise it. “Once you know the answer, it’s not that hard to reproduce,” says Steinhardt.
    But as with the other quasicrystals, nobody is quite sure what it could be used for. Steinhardt has a quasicrystal-coated frying pan that takes advantage of their hard, slippery nature in a corner of his office, but no other practical applications have been found yet.
    Part of the point of looking for new quasicrystals is “to find new quasicrystalline alloys that might have some use, because none of the ones discovered so far really have any use other than ‘wow, this is cool’ ”, says Paul Asimow at the California Institute of Technology, who helped study the origin of these materials. “But it’s not out of the question that someone will find a really good use for quasicrystals one of these days.”
    Journal reference: Nature Scientific Reports, DOI: 10.1038/srep38117
    More on these topics:
    Third-ever natural quasicrystal found in Siberian meteorite | New Scientist
    https://www.newscientist.com/articl...ral-quasicrystal-found-in-siberian-meteorite/
     
  3. CULCULCAN

    CULCULCAN The Final Synthesis - isbn 978-0-9939480-0-8 Staff Member

    Messages:
    55,226
    Meteorite-sml.
    UPDATED 23 JULY, 2019 - 08:05 NATHAN FALDE
    Meteorite Found in Siberia Contains Naturally Impossible Crystal

    PRINT
    In 2009, scientists made a groundbreaking discovery that was ultimately traced to a remote corner of the world. In a box obtained from the Italian Museum of Natural History in Florence, Italy, they found a small grain of extraterrestrial mineral that was formed shortly after the birth of our solar system, 4.5 billion years ago. The mineral came from an area near the Koryak Mountains in eastern Siberia, and was delivered to Earth by an object known as the Khatyrka meteorite. The latter was discovered only after researchers returned to the area in search of more exotic minerals in 2011.





    The Mysterious Man from Taured – Evidence for a Parallel Universe?




    This new rock has been designated as a quasicrystal, in recognition of its unique structural properties. A quasicrystal looks like a normal crystal on the outside, but on the inside it is noticeably different. While the atoms in a pure crystal are arranged in constantly repeating patterns, the atomic lattices inside the quasicrystal are both ordered and diverse, displaying a range of shapes never before seen in a natural substance.
    More than 100 synthetic versions of these minerals have been produced in laboratories, between 1982 and the present day. Until these experiments, such a form of matter had never been seen before, and in the past had been believed to be theoretically impossible according to accepted ideas about the laws of nature. Previously the only thing ever found were crystals, with their rigidly repetitive patterns, and so-called normal solids, which are comprised of atoms arranged in no particular order.
    More From The Web


    A Scientific Detective Story

    Even after quasicrystals were created in a laboratory, their existence in nature was doubted. But one of the people who’d predicted that quasicrystals might actually be makeable, Princeton University theoretical physicist Paul Steinhardt, was determined to leave no stone unturned (figuratively and literally) in his search for quasicrystals formed by the processes of nature .
    It was Steinhardt who was responsible for finding the quasicrystal sample in the box from the Italian museum, with assistance from an Italian geologist named Luca Bindi. Steinhardt formed a team of scientists to study this intriguing mineral, and they eventually confirmed the unique structure of the tiny rock from one of the planet’s remotest areas.
    To uncover the true origin of the quasicrystal sample, the team of scientists investigated numerous possibilities. They tried to develop a realistic scenario explaining how the quasicrystal could have formed naturally on Earth. But in the end, they were able to establish with near 100-percent certainty that it had arrived on Earth from somewhere else in the solar system.
    Steinhardt’s analysis showed the mineral was embedded in another mineral known as stishovite. This rock comes from meteorites, and its encirclement of the quasicrsytal meant both minerals had been formed by a high-pressure process at approximately the same time inside a meteorite that eventually landed in the wilds of Siberia. Further cementing their conclusion was the discovery that the ratio of oxygen isotopes inside the quasicrystal was not consistent with ratios found on Earth, but was instead explainable only if the quasicrystal had been created off-planet.
    “The finding is important evidence that quasicrystals can form in nature under astrophysical conditions, and provides evidence that this phase of matter can remain stable over billions of years,” Steinhardt explained after announcing the results of his team’s analysis.
    Not content with finding just one quasicrystal, Steinhardt and associates made their own trip to Siberia in 2011. After searching the Kamchatka Peninsula area near the Koryak Mountains, they were able to obtain a fresh sample of rock from the Khatyrka meteorite, and inside they eventually found two more quasicrystals , each of which had a unique molecular structure. Since quasicrystals are extremely small the hunt for them is a bit like searching for a needle in a haystack, and the most recently discovered sample was only uncovered in 2016, five years after the meteorite sample was removed from Siberia.
    All three quasicrystals were found to contain a mixture of aluminum, copper and iron. The third quasicrystal discovered has a special structure that has yet to be created in synthetic form in a laboratory, highlighting nature’s persistent habit of producing more novelty than we expect or imagine to be possible.
    As for the source of the naturally-formed quasicrystals, Steinhardt speculates that a violent collision between two asteroids in the early days of the solar system may have created these remarkable minerals. Close study of their characteristics, and other materials in the Khatyrka meteorite sample retrieved, could help physicists and geologists determine more about what conditions were like when the solar system was in its formative stage.
    Quasicrystals possess an interesting package of characteristics. They are extremely hard, but they are also slippery to the touch and do not generate much friction.
    So far, the search for useful applications has yielded only a few results, even though researchers have been working with synthetic samples for more than three decades. Quasicrystal has been used to harden the steel from which surgical and other medical instruments are manufactured, and Steinhardt himself invented a quasicrystal-lined frying pan that has some impressive no-stick qualities. But as of now, that’s about it.
    Nevertheless, hope springs eternal.
    As explained by Paul Asimov, a quasicrystal researcher from the California Institute of Technology, scientists working in this area hope “to find new quasicrystalline alloys that might have some use, because none of the ones discovered so far really have any use other than ‘wow, this is cool. But its not out of the question that someone will find a really good use for quasicrystals one of these days.”
    Treasure Troves from the Sky

    It is estimated that as much as 100 tonnes of space debris will enter the Earth’s atmosphere each and every day. Most of it will burn up, but a few thousand kilograms of material will actually make it to the Earth’s surface annually.
    Few would ever guess that we’re constantly being showered by rocks and dust from the solar system, only a small portion of which will ever be seen or identified.
    Which of course bings up a question. Are there other exotic, extraterrestrial forms of matter delivered by meteorites laying around in remote or distant locations, just waiting to be discovered by intrepid scientific explorers? The possibility cannot be ruled out.
    At one time, the existence of substances like quasicrystals was considered impossible Other impossible leftovers from ancient times may have landed here as well, brought in on the wings of fiery, glowing chariots of rock. If and when they’re discovered, they may force us to expand our conceptions about the nature of matter.
    Top image: An iron meteorite. Credit: Vladimir / Adobe Stock
    By Nathan Falde
     

Share This Page