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The Monopolar Quantum Relativistic Electron: An Extension of the 

Standard Model & Quantum Field Theory (Part 2) 
 

Anthony Bermanseder* 
 

Abstract 
In this paper, a particular attempt for unification shall be indicated in the proposal of a third kind 

of relativity in a geometric form of quantum relativity, which utilizes the string modular duality of 

a higher dimensional energy spectrum based on a physics of wormholes directly related to a 

cosmogony preceding the cosmologies of the thermodynamic universe from inflaton to instanton. 

In this way, the quantum theory of the microcosm of the outer and inner atom becomes subject to 

conformal transformations to and from the instanton of a quantum big bang or qbb and therefore 

enabling a description of the macrocosm of general relativity in terms of the modular T-duality of 

11-dimensional supermembrane theory and so incorporating quantum gravity as a geometrical 

effect of energy transformations at the wormhole scale. 

 

Part 2 of this article series includes: The Mass Distribution for the Quantum Relativistic Classical 

Electron; Electromagnetic Mass Distribution for the Quantum Relativistic Electrodynamic 

Electron; The bare rest mass of the electron in the Coulombic charge quantum and the mensuration 

calibration in the alpha fine structure; The M-Sigma conformal mapping onto {meo/me}
2 in the ß2 

distribution; The Planck-Stoney Bounce in conformal supermembrane cosmology; and The charge 

radius for the proton and neutrinos in quantum relativity. 
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The Mass Distribution for the Quantum Relativistic Classical Electron 
  

We set Constant A in Amec = μoe
2/8πc2Re for Aß2 = 1/√[1 - ß2] - 1  

from: c2(m - mec) = μoe
2v2/8πRe = mecc

2(1/√[1-ß2] - 1) = mecv
2A with a total QR monopolar mass 

m = mec/√(1-[v/c]2)  

  

This leads to a quadratic in ß2: 1 = (1 + Aß2)2(1-ß2) = 1 + ß2(2A+A2ß2-2Aß2-A2ß4 - 1) and so:  

{A2}ß4+{2A-A2}ß2+{1-2A} = 0 with solution in roots:  

ß2 = ([A-2] ± √[A²+4A])/2A = {(½-1/A)±√(¼+1/A)} 
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and  

A = -{1 ± 1/√(1-ß2)}/ß2 

 

solving (in 4 roots) the quadratic (2Aß2+2-A)2 = A2 + 4A……[Eq.8]  
  

This defines a distribution of ß2 = (v/c)2 and ß = v/c velocity ratios in mec.Aß2 = μoe
2[v/c]2/8πRe  

The electromagnetic mass mec in the relation mecA = ½me is then the monopolar quantum 

relativistic rest mass and allows correlation by the Compton constant and between its internal 

magnetopolar self-interaction with its external magnetic relativistic and kinetic effective electron 

ground state mass me respectively.  

 

In particular me = 2Amec and is mec for A=½ as the new minimization condition. In string 

parameters and with me in *units, meA=30e2c/e*=½me=4.645263574x10-31 kg*  

 

In terms of the superstring quantum physical theory, the expression [ec]unified = 4.81936903x10-11 

kg* or [ec3]u = 2.7x1016 GeV* as the Grand-Unification (GUT) energy scale of the magnetic 

monopole, which represents the first superstring class transformation from the Planck-string class 

I of closure to the self-dual opening of class IIB, as the magnetic monopole of the inflaton epoch.  

 

E* = Eweyl = Eps = hfps = hc/λps = mpsc2 = (me/2e).√[2πGo/αhc] = {me/mP}/{2e√α} = 1/2Rec2 = 

1/e* ...... [Eq.9] 

Monopolar charge quantum e*/c2 = 2Re ⇐ supermembrane displacement transformation ⇒ 

√α.lplanck = e/c2 as Electropolar charge quantum 
 

This implies, that for A=1, mec = ½me , where me = 9.290527155x10-31 kg* from particular 

algorithmic associations of the QR cosmogony and is related to the fine structure of the magnetic 

permeability constant μo = 120π/c = 1/εoc
2, defining the classical electronic radius.  

As ß≥0 for all velocities v, bounded as group speed in c for which ß2=ß=1, (and not de Broglie 

phase speed: vdB = (h/mvgroup)(mc2/h) = c2/vgroup >c); a natural limit for the ß distribution is found 

at A = ½ and A = ∞.  

  

The electron's rest mass mec so is binomially distributed for the ß quadratic. Its minimum value is 

half its effective mass me and as given in:  

  

μoe
2/8πmeRe = ½me for a distributed rest-mass mec/Re = me/rec in A and melectric = kq2/2Rec

2 = 

μoe
2/8πRe = Ue/c

2 = ½me for A=½ and its maximum for A=∞ is the unity v=c for ß=1  

  

The classical rest-mass mo of the electron and as a function of its velocity from v=0 to v=c so is 

itself distributed in its magnetic mass potential about its effective rest mass me=μoe
2/4πRec

2 and as 

a function of the classical electron radius Re.  
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Its minimum condition is defined by the electric potential energy in mo=½me for a value of A=½ 

with effective rest mass me being the rest mass for a stationary electron v=0 without magnetic 

inertia component.  

 

For v=c, the mass of the electron incorporates a purely relativistic and quantum relative self-

interacting magnetic monopolar value for which mo=0 and the effective rest mass me assumes the 

minimum rest energy for the electron at A=1 and generalised as me=2Amo.  

  

The classical rest mass mo=hf/c2 so decreases from its maximum value as mo=me to mo=0 as a 

function of the velocity distribution and in the extension of the classical force to incorporate the 

rest mass differential                                                                                                                                                                                                

d(mo) = hd(f)/c2 by FNewton = Fa + Fα = F-acceleration + F-alpha as the sum of the classical 

Newtonian linear momentum change and the quantum mechanical angular acceleration 

momentum change in the self-interaction for the electron. [Eq.4]  

 

 

  

Electromagnetic Mass Distribution for the Quantum Relativistic 

Electrodynamic Electron 
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2 
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1-½√2 = 

0.292893218 

 
-2.914213562 
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complex 
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A3u = 

0.488540761 
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9 
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x10-11 C/kg 

with αvar max 
0-31 

9.109015537x

10-31 

 
A6u = 
0.512122936 

 

 
ß6u

2 = 

-1.452656072 

± 1.484134815 

0.031478742 
-

2.93679088

7 

 
9.143130852x

10-31 
9.108943838x

10-31  

0.177 

 

 
1.553982826x10-18 c 

2.73370771x10-15  

= 0.98413478 Re 

1.016 Re  

 
Aub = 

0.512540039 

 

 
ßub

2 = 

-1.451067085 
± 1.483599368 

0.032532283 
-

2.93466645

3 

 
9.138156632x
10-31 

9.103988218x

10-31  

0.180 

 

 
1.555675057x10-18 c 

2.73222047x10-15  
= 0.98359937 Re 

1.017 Re 

 
4(⅔√3-1) 
0.618802153 

 
-1.116025404 
±1.366025404 
-

¼(1+2√3)±½√(4+

2√3) 

¼ 

 
-

2.48205008

08 
-(¾+√3) 

 
[1.24/1.24]me√
(1-x) 
8.045832525x

10-31 
8.015748411x
10-31 

0.500 

2.006753867x10-18 c 
vps = 

6.020261601x10-9 
2.405626121x10-15  
= 0.866025403 Re 

1.238 Re 

 

 
¾ 
Mean: ½{½+1} 
∑surface 

charge 

-⅚ ± √(19/12) 0.424972405 -2.09164 

 
[3/2]⅔me√(1-

x) 
7.045060062x

10-31 
7.018717929x

10-31 

0.652 

 

 

 

 
2.617379438x10-18 c 
vps = 

7.852138314x10-9 
2.10640483x10-15  

= 0.75830574 Re 

3Re/2 

 
⅚ 
∑Volume 

charge 

-7/10 ± √(29/20) 0.504159457 
-
1.90415945

8 

 
[5/3]⅗me√(1-

x) 
6.542012566x

10-31 
6.517551374x
10-31 

0.710  

 

 
3.035381866x10-18 c 
vps = 
9.106145598x10-10 
1.9559985x10-15  

= 0.70415946 Re 

5Re/3 

1 -½ ± ½√(5) 0.618033988 
-

1.61803398

8 

 
[2]½me√(1-x) 
5.741861551x

10-31 
5.720392198x

10-31 

0.786  

 

 

 
3.94031237x10-18 c 

vps = 

1.182093711x10-9 
1.71676108x10-15  

= 0.61803399 Re 

2 Re 

 
1+½√2 = 

1.707106781 

 
-0.085786437 

±0.914213562 

 
0.828427125 
 
x-root is real 

 
-1 = i2 
 
y-root is 

complex 

 
[3.41/3.41]me√

(1-x) 
3.848262343x

10-31 

3.833873334x

10-31 

0.910 

 

 
8.77216401x10-18 c 

2.631649203x10-9 

1.150593228x10-15 

0.414213562 Re 
=( √2 - 1) Re 

 
3.41421356

2 Re  

= (2+√2) 

Re  



Prespacetime Journal| May 2019 | Volume 10 | Issue 3 | pp. xxx-xxx 
Bermanseder, A., The Monopolar Quantum Relativistic Electron: An Extension of the Standard Model & Quantum Field Theory 
(Part 2) 

 

ISSN: 2153-8301  Prespacetime Journal 
Published by QuantumDream, Inc. 

www.prespacetime.com 

 

307 

2 0 ± ½√(3) 0.866025403 
-

0.86602540
3 

 
[4]⅙me√(1-x) 
3.400568951x

10-31 
3.387853908x

10-31 

0.931 

 

 

 

 
1.123396092x10-17 c 
3.370188275x10-9 
1.01673724x10-15  
= 0.36602540 Re 

4 Re 

2.47213603  0.095491515 ± 

0.809016986  0.904508501  
-

0.71352554

71 

[4.94/4.94]me√

(1-x) 
2.870930718x

10-31 
2.860196042x

10-31  

0.951  

 

 
1.576125021x10-17 c 

4.728375064x10-9 
Rproton = 

0.85838052x10-15 
= 0.309016987 Re  

4.94427206 

Re  

3 ⅙ ± √(7/12) 0.930429282 
-

0.59719594

9 

 
[6]⅙me√(1-x) 
2.450493743x
10-31 
2.44133112x1

0-31 

0.965 

 

 

 
2.163360455x10-17 c 
6.490081364x10-9 
7.32673935x10-16  

= 0.26376262 Re 

6 Re 

4 ¼ ± √(½) 0.957106781 
-

0.45710678

1 

 
[8]⅛me√(1-x) 
1.924131173x
10-31 
1.916936668x

10-31 

0.978 

 

 
3.50886558x10-17 c 
1.052659674x10-8 
5.75296616x10-16  
= 0.20710678 Re 

8 Re 

 
174,532,925.3 

-{1±1/√[1-ß2]} 

/ß2 

~-

1{1±1+½ß2}/ß2 

 
0.499999...4 ± 

0.500000...5 

~ ½- ± ½+ 

 
0.999999999.....

. 

{me/αmps}
2 = 

1-

3.282806345x1

0-17 

 
-

0.000000...

1 

 

 

 
[#/#]me√(1-x) 
5.323079946x

10-39 

5.303176457x

10-39 
minimum 

mass 

(electron-

neutrino) 
0.0029710479

4 eV* 

mνe =mvτ
2 

= 0. 

002982..eV* 

0.999 

 

 

 

 

 
qbb boundary of 

physicality 
 
0.045798805 c 

13,739,641.79 
rec = rps 

=(me/αmps)Re 

1.59154943x10-23  

= 5.7296x10-9 Re  

349,065,85

0.6 Re 

∞ ½- ± ½+ 1- 0- 

 
[∞-]0+me√(1-

x)=me 
meo=0+ 

1- 

 
algorithmic 

metaphysicality 

inflaton spacetime 

as complex vps = ic = 

ci 

[∞] Re 

 

 



Prespacetime Journal| May 2019 | Volume 10 | Issue 3 | pp. xxx-xxx 
Bermanseder, A., The Monopolar Quantum Relativistic Electron: An Extension of the Standard Model & Quantum Field Theory 
(Part 2) 

 

ISSN: 2153-8301  Prespacetime Journal 
Published by QuantumDream, Inc. 

www.prespacetime.com 

 

308 

The X-root is always positive in an interval from 0 to 1 and the Y-root is always negative in the 

interval from -3 to 0.  

 

For A=∞: ß2=½-±½+ for roots x=1- and y=0-; for v=c with Um = (½v2)μoe
2/8πRe = (½v2)μoe

2/4πRe 

= ½mec2 = mmagneticc2 = melectricc2
 and mo = 0me  

 

Aß2 = ([1-ß2]-½-1) = 1+½ß2-3ß4/8+5ß6/16 -35ß8/128+...-1  

The Binomial Identity gives the limit of A=½ in: A=½ - ß2{3/8 - 5ß2/16 + 35ß4/128 -...} and as the 

non-relativistic low velocity approximation of E=mc² as KE=½mov².  

  

Letting ß2=n, we obtain the Feynman-Summation or Path-Integral for dimensionless cycle time n 

= Hot = ct/RHubble with Ho=dn/dt in the UFoQR for 1 = (1-ß2)(1+ß2)2 as ß4+ß2-1=0 for T(n) = n(n+1 

)= 1.  

  

  

  

The bare rest mass of the electron in the Coulombic charge quantum and the 

mensuration calibration in the alpha fine structure  

  

We shall also indicate the reason for the measured variation of the fine structure constant by Webb, 

Carswell and associates; who have measured a variation in alpha dependent on direction.  

This variation in alpha is found in the presence of the factor γ3 in the manifestation of relativistic 

force as the time rate of change of relativistic momentum prel. Furthermore, the mass-charge ratio 

{e/meo} relation of the electron implies that a precision measurement in either the rest mass moe or 

the charge quantum e, would affect this ratio and this paper shall show how the electromagnetic 

mass distribution of the electron crystallizes an effective mass me from its rest mass resulting in 

meoγ = meγ
2 related to the coupling ratio between the electromagnetic (EMI) and the strong nuclear 

interaction (SNI), both as a function of alpha and for an asymptotic (not running) SNI constant 

defined from first principles in an interaction transformation between all of the four fundamental 

interactions.  

 

Since {1 - ß2} describes the ß2 distribution of relativistic velocity in the unitary interval from A=0 

to A=1, letting {1 - ß2} = {√α}3 = 6.232974608...x10-4, naturally defines a potential oscillatory 

upper boundary for any displacement in the unit interval of A. An increase or decrease in the 'bare' 

electron mass, here denoted as moe can then result in a directional measurement variation due to 

the fluctuating uncertainty in the position of the electron in the unitary interval mirroring the 

natural absence or presence of an external magnetic field to either decrease or increase the 

monopolar part of the electron mass in its partitioning: melectric + mmagnetic + δmmonopolic = 

mec{½+½[v/c]²} + δpsmec = mec with mec
2√{1 + v2γ2/c2} = mec

2γ = mecc
2 for m = mec from the 

energy-momentum relation E2 = Eo
2 + p2c2 of classical and quantum theory.  
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The cosmic or universal value of alpha so remains constant in all cosmological time frames; with 

the fluctuation found to depend on an asymptotically constant strong interaction constant as a 

function of alpha.  

In the SI measurement system Planck's constant h = 6.62607004x10-34 Js and the speed of light is 

c = 2.99792458x10-8 m/s and the electron charge are e=1.60217662x10-19 C for a bare electron 

mass of 9.10938356x10-31 kg.  

 

In a mensuration system in which c would be precisely 3x108 (m/s)*; the following conversions 

between the SI-system and the *-system are applied in this paper.  

 

Furthermore, there exists one fundamental constant in the magnetic permeability constant μo = 

4πx10-7 H/m which becomes numerically equal in the Maxwell constant μo = 1/εoc
2 in an applied 

fine structure μo.εo = {120π/c}.{1/120πc} = 1/c2 (s/m)2; (s/m)2*. Subsequently in the calculation 

of alpha, the speed conversion must be incorporated for unitary consistency.  

 

Alpha remains constant for a cosmology descriptive of a non-accelerating cosmology; but will 

result in a change in the electric charge quantum in a cosmology, which measures an accelerated 

spacial expansion, which can however be the result of a self-intersection of the light path for 

particular cosmological redshift intervals in an oscillating cosmology.  

{https://cosmosdawn.net/index.php/en...-alpha-variation-and-an-accelerating-universe}  

Here a particular alpha variation reduces the SI-measurement for the square of the charge quantum 

e in a factor of (1.6021119x10-19/1.60217662x10-19)2 = 0.99991921...for a calibrated:  

  

alpha variation αvar = 1 - (1.6021119x10-19/1.60217662x10-19)2 = 1 - 0.9999192 = 8.08x10-

5
.........[Eq.10]  

  

Alpha α = μoce2/2h = 2π.(2.99792458)(1.6021119)2x10-37/(6.62607004x10-34) = 60πe2/h = 

7.2967696x10-3 = 1/137.047072  

  

{s}  =  1.000978394  {s*}  =  0.999022562  {s}  

{m}  =  1.001671357  {m*}  =  0.998331431  {m}  

{kg}  =  1.003753126  {kg*]  =  0.996260907  {kg}  

{C}  =  1.002711702  {C*}  =  0.997295631  {C}  

{J}  =  1.005143377  {J*}  =  0.994882942  {J}  

{eV}  =  1.00246560  {eV*}  =  0.997540464  {eV}  

{K}     0.98301975  {K*}  =  1.017273559  {K}  

https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
https://cosmosdawn.net/index.php/en/2-introduction/26-he-alpha-variation-and-an-accelerating-universe
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From the unification polynomial U(x) = x4 + 2x3 - x2 - 2x + 1 = 0 and derivative U'(x) = 4x3 + 6x2 

- 2x - 2 with minimum roots at x1 = X and x2 = -(X+1) = Y and maximum root at x3 = ½ we form 

the factor distribution (1-X)(X)(1+X)(2+X) = 0 and form a unification proportionality:  

  

SNI:EMI:WNI:GI = [Strong Nuclear Interaction #]:[Electromagnetic Interaction #3]:[Weak 

Interaction #18]:[Gravitational Interaction #54] 

under the Grand Unification transformation of X ⇔alpha α 

  

X ⇔ α in ℵ(Transformation) = {ℵ}3 : X → α{#}3 → # → #3 → (#2)3 → {(#2)3}3 
...........[Eq.11]  

  

This redefines the Interaction proportion as: SNI:EMI:WNI:GI = [#]:[#3]:[#18]:[#54] = 

[1X]:[X]:[1+X]:[2+X] for the X Alpha Unification, which is of course indicated in the unitary 

interval from A = 0 to A =1 in the ß2 distribution for the electron mass.  

 

SNI:EMI [1-X]:[X] X X 

 

#:#3 

 

#-2 

 

α-⅔ 

 

1/∛α2 

 

Invariant 

Upper Bound 

X-Boson 

SNI:WNI [1-X]:[1+X] [2X-1] X3 

 

#:#18 

 

#-17 

 

α-⅓(17) 

 

1/∛α17 

    

SNI:GI [1-X]:[2+X] [1-X]2 X4 

 

#:#54 

 

#-53 

 

 

 

α-⅓(53) 

 

 

 

1/∛α53 

    

EMI:WNI [X]:[1+X] [1-X] X2 

 

#3:#18 

 

#-15 

 

α-5 

 

 

1/∛α15 

    

EMI:GI [X]:[2+X] [2X-1] X3 

 

#3:#54 

 

#-51 

 

 

 

α-17 
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1/∛α51 

WNI:GI [1+X]:[2+X]   X 

 

#18:#54 

 

#-36 

 

α-12 

 

 

 

1/∛α36 

 

Invariant 

Lower Bound 

L-Boson 

 

For the unitary interval at A=½ the Compton constant defines me.Re, but at A=1, the constancy 

becomes ½me.2Re and at the average value at A=¾ it is ⅔me.(3/2)Re.  

 

This crystallizes the multiplying (4/3) factor calculated from the integration of the volume 

element to calculate the electromagnetic mass in the Feynman lecture: 

http://www.feynmanlectures.caltech.edu/II_28.html and revisited further on in this paper. if the 

electrostatic potential energy is proportional to half the electron mass is changed by a factor of 

(4/3), then the full electron mass will be modified to ⅔ of its value.  

 

Using the ß2 velocity distribution, one can see this (4/3) factor in the electromagnetic mass 

calculation to be the average between the two A-values as ½(½+1) = ¾ for a corrected electron 

mass of ⅔me and for a surface distribution for the electron.  

 

The problem with the electromagnetic mass so becomes an apparent 'missing mass' in its 

distribution between the electric- and magnetic external fields and the magnetopolar self 

interaction fields as indicated in this paper.  

  

In the diagram above the mass of the electron is distributed as mec in the unitary interval applied 

to the Compton constant and where exactly half of it can be considered imaginary or complex from 

A=0 to A=½. The mass of the electron at A=0 is however simply half of its effective mass me, 

which is realised at the half way point at A=½ as the new origin of the electron's electrostatic 

energy without velocity in the absence of an external magnetic field. We have seen however, that 

the electrostatic electron carries a minimum eigen-velocity and so magnetopolar self-energy, 

calculated as vps = 1.50506548x10-18 c and manifesting not as a dynamic external motion, but as 

fαω = 2.84108945x10-16 = ∑fss = ∑mssc
2/h = fαω/fss = 8.52326834x1014 mass- or frequency self 

states.  

  

But how can the bare electron mass be obtained from first principles? This bare electron rest mass 

must be less, than the effective mass me at A=½ and more than half of me at the absolute 0 state at 

A=0.  

 

We know this discrepancy to be ⅓me on mathematical grounds and so one might relate the  

http://www.feynmanlectures.caltech.edu/II_28.html
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Compton constant in the ⅓Re to set the ⅓me interval as being centered on A=½ for two bounds A1 

and A2 in the 'complex' region where ß2 is negative and where ß2 is positive respectively. To 

approximate the two bounds, we shall define the sought interval for the bare electron mass meo as 

a function of alpha and as a function of the classical electron radius.  

  

The monopolar energy is defined in the Weyl energy of the qbb and in Eps = 1/e* = 1/2Rec
2 and 

using the modular string duality we use the magneto charge quantum not as inverse energy Eweyl, 

but as energy to set m*= E*/c2 = 2Re* and so the unification factor for the electron mass mec at 

A=1. As can be seen in the diagram, the alpha variation becomes a delta energy added to the 

magneto charge quantum to finetune the electron rest mass interval.  

 

The elementary interaction ratios can be applied to the quantum nature of the electron in the form 

of the original superstring transforms (discussed further later in this paper) and apply here in the 

EMI/SNI = α⅔ to set the electron's interaction relative to the SNI and a decreasing size of the 

electron centered at the Re scale decreasing towards the nuclear center with increasing speed in the 

'real interval'.  

  

As we require ⅔me as the average in the surface charge interval from A=½ to A=1 we define the 

sought bounding interval for the bare electron mass as ⅓α⅔+ ⅓α⅔ = ⅔α⅔.  

The lower bound for meo so is Alb = ½ - ⅓α⅔ = 0.487459961.... and the upper bound becomes Aub 

= ½ + ⅓α⅔ = 0.512540039... for a total A-interval of Alb + Aub = 0.0025080078... = 

2(0.012540039).  

 

We so can define me(meo;ß
2 ) = me/ √(1 - ß2) = meo/ (1 - ß2) for any meo in the interval defined in 

the ß2 distribution and [Eq.8] with the effective rest mass me = 9.290527148x10-31 kg* in * units.  

  

ßlb
2 (0.487459961...) = -1.55145054... + 1.517053242... = -0.034397297... (equilibrium in x-root) 

for meo = me√(1 - i2ß2) = 9.129344446x10-31 kg* for 9.095208981x10-31 kg.  

ßo
2 (0.5000000000) = -1.50000000... + 1.5000000000... = 0.000000000... (complex in x-root) for 

meo = me√(1 - 0) = 9.290527148x10-31 kg* for 9.255789006x10-31 kg.  

ßub
2 (0.512540039...) = -1.451067085... + 1.483599368... = 0.032532283... (real in x-root) for 

meo = me√(1 - ß2) = 9.138156632x10-31 kg* for 9.103988218x10-31 kg.  

  

So we know that the bare electron mass will be near 0.982651 of the real me in the complex region 

of the unitary interval.  

 

To correlate the complex solution for meo with the real solution for meo, we are required to shorten 

the interval Aub - Alb in a symmetry for the electron mass. This will result in a complex solution 

in the complementary x-root. We can ignore the y-roots for ß2, as they are all negative in view of 

the x-root always being negative in the described interval.  

  

A reasonable approach is to remain in the described interval and next utilize the Compton constant 

in the form of the magneto charge quantum as the inverse of the Weyl wormhole energy, also 
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noting the scale of magnitude of the 1/e* = 1/2Rec
2 being of the same order as alpha as α/Eweyl = 

αe* = 3.648381483 or e*= 0.274094144.α.  

Additionally, a conformal mapping of the minimum Planck energy as a Planck oscillator Eo = ½hfo 

at the Planck energy of superstring class I onto the heterotic superstring HE(8x8) in the qbb energy 

quantum Eps = Eweyl associates and couples the unitary interval to the displacement bounce of the 

inflaton. We denote the Eps energy quantum as |Eps| in its unified modular self-state where Eps.e* 

= 1 = E*e*  

  

As ß2 = (1 - {me/mec}
2) and (1 - {meo/me}

2) as a distribution of mass ratios, it can be linked to the 

Compton constant in me/mec = rec/Re in an inverse proportionality and so the unitary interval and 

the electron's mass and spacial extent distribution.  

  

We set the interval A2 = Aub - ½|Eps| = 0.512540039...- 0.001 = 0.511540039... and the conjugate 

interval as A1 = Alb + ½|Eps| = 0.487459961... + 0.001  

= 0.488459961... ß1
2 (0.488459961...) = -1.547250706... + 1.515668402... = -0.031582303... 

(complex in x-root) for meo = me√(1 - i2ß2) = 9.142642017x10-31 kg*  

for 9.108456831x10-31 kg. ß2
2 (0.511540039...) = -1.45488119... + 1.484884234... = 

0.030003044...(real in x-root) for meo = me√(1 - ß2) = 9.150093721x10-31 kg* for 9.115880672x10-

31 kg.  

  

For the final interval fine structure we apply the alpha variation, also noting that the excess of the 

original upper and lower bounds is near the fractional divergent parts.  

  

{Aub - ½} + {½ - Alb} = 2(0.012540039) = 0.025080078 = 2(⅓α⅔) = 1/40 + 0.000080078... = 

½|Eps|(25) + 0.000080078... = ½|Eps|(25) + [~]αvar in 7.22x10-7 parts.  

Aub - A4l = A3u - Alb = 0.0010808... = 0.001 + 0.0000080078 = ½|Eps| + [~]αvar . Aub = ½ + ⅓α⅔ = 

0.512540039...= 0.51254 + 0.000000039... and Alb = 0.487459961... = 1 - 0.5124 - 0.00000039...  

  

  

The alpha variation αvar = 1 - (1.6021119x10-19/1.60217662x10-19)2 = 1 - 0.9999192 = 8.08x10-5 

by [Eq.10]  

  

A3l = A1 + ½αvar = 0.488459961... + 0.0000404... = 0.488500361... and its image is A4u = A2 - 

½αvar = 0.511540039... - 0.0000404... = 0.511499639...  

A3u = A1 + αvar = 0.488459961... + 0.0000808... = 0.488540761... and its image is A4l = A2 - αvar = 

0.511540039... - 0.0000808... = 0.511459239... ß3l
2 (0.488500361...)  

= -1.547081394... + 1.515612547... = -0.031468846... (complex in x-root) for meo = me√(1 - i2ß2) 

= 9.143177565x10-31 kg* for 9.108990376x10-31 kg.  

ß3u
2 (0.488540761...) = -1.54691211... + 1.5155567... = -0.03135541... (complex in x-root) for meo 

= me√(1 - i2ß2) = 9.143712983x10-31 kg* for 9.109523792x10-31 kg.  

ß4u
2 (0.511499639...) = -1.455035593... + 1.484936225... = 0.029900632...(real in x-root) for meo 

= me√(1 - ß2) = 9.15057674x10-31 kg* for 9.116361885x10-31 kg.  
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ß4l
2 (0.511459239...) = -1.455190021... + 1.484988222... = 0.029798201...(real in x-root) for meo 

= me√(1 - ß2) = 9.151059822x10-31 kg* for 9.1163843161x10-31 kg.  

  

The bare electron mass meo should be found in two intervals defined in the alpha variation applied 

to both a complex halving part A3 upper bound - A3 lower bound for a minimized δmin added to ½αvar and 

a real halving part A6 lower bound - A6 upper bound for a maximized δmax subtracted from ½αvar.  

  

To calibrate the units of the (*) mensuration system with the SI-measurement system, the mass 

charge ratio for the electron and assuming a unit defined consistency, is applied in: 

 {e/meo = 1.606456344x10-19 C*/9.143202823x10-31 kg* = 1.756995196x1011 C*/kg* } and {e/meo 

= 1.602111894x10-19 C/9.10901554x10-31 kg = 1.758820024x1011 C/kg } minimized in the alpha 

variation maximum.  

  

There is a deviation in the symmetry between the complex solution and the real solution for the 

bare electron mass and this deviation mirrors the original bounce of the Planck length and the 

minimum Planck Oscillator |Eo = Eps = Eweyl| at the cosmogenesis of the inflaton. We recall the 

supermembrane displacement transformation of [Eq.9]:  

  

  

Monopolar charge quantum e*/c2 = 2Re ⇐ supermembrane displacement transformation ⇒ 

√α.lplanck = e/c2 as Electropolar charge quantum 

  

We so apply this bounce of the original definition for the minimum displacement to our described 

interval in adjusting the alpha variation interval using [Eq.11]:  

X ⇔ α in ℵ(Transformation) = {ℵ}3 : X → α{#}3 → # → #3 → (#2)3 → {(#2)3}3 by the factor (√α)3 

and so setting the cosmogenic displacement bounce of the qbb as being proportional to our lower 

and upper bounded A valued interval for the ß2 distribution.  

  

⅔α⅔ ∝ (√α)3 in ⅔α⅔ ≈ 1/40 + αvar = {⅔α-⅚}(√α)3  

for proportionality constant {⅔α-⅚} = 1/{1/40 - 1.477074222x10-4} = 1/{1/40 - 1.828.αvar}…...... 

[Eq.12]  

  

  

For (√α)3 = 6.232974608x10-4 then:  

A5l = A3l + 6.232974608x10-4 = 0.488500361...+ 6.232974608x10-4 = 0.489123658...  

A5u = A3u + 6.232974608x10-4 = 0.488540761...+ 6.232974608x10-4 = 0.489164058...  

A6u = A4u + 6.232974608x10-4 = 0.511499639...+ 6.232974608x10-4 = 0.512122936... A6l = A4l + 

6.232974608x10-4 = 0.511459239...+ 6.232974608x10-4 = 0.512082536...  

  

for the ß2 solutions:  
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ß5l
2 (0.489123658...) = -1.54447277... + 1.514751719... = -0.029721051... (complex in x-root) for 

meo = me√(1 - i2ß2) = 9.151423661x10-31 kg* for 9.117205639x10-31 kg.  

ß5u
2 (0.489164058...) = -1.544303917... + 1.514695982... = -0.029607935... (complex in x-root) 

for meo = me√(1 - i2ß2) = 9.151957085x10-31 kg* for 9.117737069x10-31 kg.  

ß6u
2 (0.512122936...) = -1.452656072... + 1.484134815... = 0.031478742...(real in x-root) for meo 

= me√(1 - ß2) = 9.143130852x10-31 kg* for 9.108943838x10-31 kg.  

ß6l
2 (0.512082536...) = -1.452810201... + 1.484186714... = 0.031376512...(real in x-root) for meo = 

me√(1 - ß2) = 9.143613382x10-31 kg* for 9.109424564x10-31 kg.  

  

The real solution for the bare electron mass so converges at A = 0.512082536... = 1 - 0.487917464 

to its complex mirror solution at A = 0.488540761... = 1 - 0.511459239... for a ΔA = (√α)3 = 

6.232974608x10-4 to indicate the nature of the electron mass as a function of the cosmogenesis 

from definiton to inflaton to instanton to continuon.  

  

  

The M-Sigma conformal mapping onto {meo/me}2 in the ß2 distribution  

  

As the ß2 distribution is bounded in {Aub - Alb = ⅔α⅔} as a sub-unitary interval in a smaller 

subinterval of ½αvar; the SI-CODATA value for the rest mass of the electron is derived from first 

inflaton-based principles in a conformal mapping of the M-Sigma relation applied to the Black 

Hole Mass to Galactic Bulge ratio for the alpha bound.  

  

  

Minimum Planck Oscillator ½|Eo|⇔ 

|Eps|* = 1/|e*|  

½|Eps|  ¾|Eps|  1|Eps|  5/4|Eps|  3/2|Eps|  

Value in energy (Joules; Joules*)  1/1000  1/666⅔  1/500  1/400  1/333⅓  

Value as modulated to A-interval as 

M-Sigma  
1x10-3  

1.5x10-

3  

2x10-

3 

  

2.5x10-

3  
3x10-3  

|Eps|*/|e*| to reunitize-renormalize 

E*e*=1  
2x10-6  3x10-6  

4x10-

6 

  

5x10-6  6x10-6  

⅔-value in partition interval 

⅔me.(3/2)Re for mean  

A=¾  

1/2  3/4  1  5/4  3/2  

Fraction of Renormalization effect 1/3  1/2  2/3  5/6  1  
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Value of Δ(½αvar} in A6lb - A6ub and in 

A3ub - A3lb  

  

2x10-6 complex 

minimum  
3x10-6  

4x10-

6 

  

5x10-6  

  

6x10-6 

real  

maximum  

 

The ½avar sub-interval so is adjusted by 6x10-6 from A6ub - Δ(½αvar} = ASI for ßSI
2 for meoSI for the 

real solution 

 

  

The Planck-Stoney Bounce in conformal supermembrane cosmology  

  

The pre-Big Bang 'bounce' of many models in cosmology can be found in a direct link to the 

Planck-Stoney scale of the 'Grand-Unification-Theories'.  

In particular it can be shown, that the Square root of Alpha, the electromagnetic fine structure 

constant, multiplied by the Planck-length results in a Stoney-transformation factor  

LP√α = e/c2 in a unitary coupling between the quantum gravitational and electromagnetic fine 

structures and so couples the unitary measurement of displacement in the Planck-Length 

oscillation equal to Coulombic charge quantum 'e' divided by the square of the speed of light 'c2' 

in a proportionality of Displacement = ChargexMass/Energy.  

This couples the electric Coulomb charge quantum to the magnetic monopole quantum e* as the 

inverse of the 10-dimensional superstring sourcesink energy Eps to the 10-dimensional superstring 

sinksource energy Ess as the 11-dimensional supermembrane EpsEss.  

  

{Gok=1 for Go=4πεo and represents a conformal mapping of the Planck length onto the scale of the 

'classical electron' in superposing the lower dimensional inertia coupled electric charge quantum 

'e' onto a higher dimensional quantum gravitational-D-brane magnetopole coupled magnetic 

charge quantum 'e*' = 2Re.c
2 = 1/hfps = 1/EWeyl wormhole by the application of the mirror/T duality of 

the supermembrane EpsEss of heterotic string class HE(8x8)}.  

  

But the FRB or Functional-Riemann-Bound in Quantum Relativity (and basic to the pentagonal 

string/brane symmetries) is defined in the renormalization of a wavefunction 

B(n)=(2e/hφ).exp(alpha.T(n)), exactly about the roots X,Y, which are specified in the electron 

masses for A=1 in the above.  

  

The unifying condition is the Euler Identity: XY=X+Y = i2 = -1 = cos(π)+isin(π) = ℮iπ   
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The charge radius for the proton and neutrinos in quantum relativity  

[BeginQuote] A scientific tug-of-war is underway over the size of the proton. 
Scientists cannot agree on how big the subatomic particle is, but a new 
measurement has just issued a forceful yank in favor of a smaller proton. 

By studying how electrons scatter off of protons, scientists with the PRad 
experiment at Jefferson Laboratory in Newport News, Va., sized up the proton’s 
radius at a measly 0.83 femtometers, or millionths of a billionth of a meter. That is 
about 5 percent smaller than the currently accepted radius, about 0.88 
femtometers. [EndofQuote] 

https://www.sciencenews.org/article/new-measurement-bolsters-case-slightly-smaller-

proton?tgt=more  

https://en.wikipedia.org/wiki/Proton_radius_puzzle 

  

It is the unitary interval between A=½ and A=1 which so determines the quantum nature for the 

quantum mechanics in the relativistic ß distribution.  

  

In particular for A=½ and for ß2 = x = 0, the Compton constant defines the required electron rest 

mass of electro stasis as ½mec
2 = e2c²/8πεoRe} for an effective electron size of Re,  

whilst for A=1 the mec
2 = e2c²/4πεoRe for a doubling of this radius to 2Re for ß2 = x = X.  

 

A reduced classical electron size is equivalent to a decrease of the Compton wavelength of the 

electron, rendering the electron more ‘muon like’ and indicates the various discrepancies in the 

measurements of the proton’s charge radius using Rydberg quantum transitions using electron and 

muon energies.  

 

The calibration for the classical electron radius from the electron mass from SI units to star units  

is (2.81794032x10-15).[1.00167136 m*] = 2.82265011x10-15 m* and differing from Re = 

2.777777778x10-15 m* in a factor of  (2.82265011/2.777777…) = 1.01615404. 

A reduction of the classical electron radius from Re = 2.777777778x10-15 m* to  (2.777777778x10-

15).[0.998331431 m] = 2.77314286x10-15 m, then gives the same factor of  

(2.81794032/2.77314286) = 1.01615404, when calibrating from star units. 

 

The units for the Rydberg constant are 1/m for a Star Unit* – SI calibration  [m*/m] = 

0.998331431… for a ratio [Re/SI ]/[Re/*] = (2.77314286/2.777777) = (2.81794032/2.82265011) 

 

Reducing the classical electron radius Re from 2.81794032 fermi to 2.77314286 fermi in a factor 

of 1.01615404 then calibrates the effective electron mass me to Re  in the Compton constant  

Re.me = ke2/c2 =  (2.77777778x10-15).(9.29052716x10-31) = 2.58070198x10-45 [mkg]* with   

http://meetings.aps.org/Meeting/HAW18/Session/1WEB.1
http://meetings.aps.org/Meeting/HAW18/Session/1WEB.1
https://www.sciencenews.org/article/new-measurement-bolsters-case-slightly-smaller-proton?tgt=more
https://www.sciencenews.org/article/new-measurement-bolsters-case-slightly-smaller-proton?tgt=more
https://en.wikipedia.org/wiki/Proton_radius_puzzle
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Re.me = ke2/c2 =  (2.81794033x10-15).(9.1093826x10-31) = 2.56696966x10-45 [mkg] with [mkg]* = 

(1.00167136)(1.00375313)[mkg] = 1.00543076 [mkg]. 

 

Using this reduced size of the electron then increases the Rydberg constant by a factor of 

1.01615404 

 

Using the Rydberg Constant as a function of Alpha {and including the Alpha variation Alpha|mod 

= 60πe2/h = 60π(1.6021119x10-19)2/(6.62607004x10-34) = 1/137.047072}  

as Ry∞ = Alpha3/4πRe = Alpha2.mec/2h = mee
4/8εo

2h3c = 11.1296973x106 [1/m]* or 

11.14829901x106 [1/m] defines variation in the measured CODATA Rydberg constant in a factor 

10,973,731.6x(1.01615404).(137.036/137.047072)3 = 11,148,299.0  

 

Subsequently, using the Rydberg energy levels for the electron-muon quantum energy transitions, 

will result in a discrepancy for the proton's charge radius in a factor of 10,973,731.6/11,148,299.0 

= 0.98434134… and reducing a protonic charge radius from 0.8768 fermi to 0.8631 fermi as a 

mean value between 0.8768 fermi and 0.8494 fermi to mirror the unitary interval from A=½ to 

A=1 for the electron’s relativistic ß distribution. 

  

 
  

Energy for quantization n: E = -Ze2/8πεoR = KE+PE = ½mv2 - Ze2/4πεoR for angular momentum 

nh/2π= mvR with mv2/R = Ze2/4πεoR
2 for v = Ze2/2εonh and R = n2h2εo/Ze2πm = Re/Alpha2 = 

RBohr1 = 5.217x10-11 m* for the minimum energy n=1 for m=meffective=me=9.29061x10-31 kg* and 

atomic number Z=1 for hydrogen.  

  

En =hfn = hc/λn = -Z2e4(πme)/(8πεo
2h2n2) = -Z2e4(πe2/4πεoRec

2)/(8πεo
2h2n2) = -

Z2e6/(32πReεo
3h2n2c2) for 1/λn = -Z2e6/(32πReεo

3h3n2c3) = -Z2.Alpha3/4πn2Re for eigen state n and  

Rydberg constant Ry∞ = Alpha3/4πRe = Alpha2.mec/2h = mee
4/8εo

2h3c  

 

In the Feynman lecture the discrepancy for the electron mass in the electromagnetic mass 

multiplier of 4/3 is discussed.  

 

Its solution resides in the unitary interval for A, as the arithmetic mean of: ½{½+1} = 3/4 as the 

present internal magnetic charge distribution of the electron, namely as a trisection of the colour 

charge in 3x⅓=1 negative fraction charge in the quantum geometry of the electron indicated below 

in this paper.  

  

The classical size for the proton so is likewise approximated at the mean value of its own colour 

charge distribution, now consisting of a trisected quark-gluon-anti-neutrino kernel of 3x⅔=2 

positive fraction charges, which are 'hugged' by a trisected 'Inner Mesonic Ring' (d-quark-KIR) as 
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a contracted 'Outer Leptonic Ring' (s-quark-KOR) for the manifestation of the electron-muon 

tauon lepton family of the standard model.  

  

For the electrostatic electron the ß distribution at A=½, the Compton constant gives mecrec = meRe 

for ß2 = 0 and at A=1, the Compton constant gives mecrec = ½me.2Re for ß2 = X and as the mean 

for a unitary interval is ½, the electron radius transforms into the protonic radius containing 

monopolar charge as internal charge distribution in Rp = ½XRe and where the factor X represents 

the symmetry equilibrium for a ß=(v/c} velocity ratio distribution for the effective electron rest 

mass me proportional to the spacial extent of the electron.  

  

For the proton then, its 'charge distribution' radius becomes averaged as Rproton = 0.85838052x10-

15 m* as a reduced classical electron radius and for a speed for the self-interactive or quantum 

relativistic electron of 2.96026005x10-13 c. This quantum relativistic speed reaches its v/c=1- limit 

at the instanton boundary and defines a minimum quantum relativistic speed for the electron at  

ve = 1.50506548x10-18 c for its electrostatic potential, where Ue=∫{q²/8πεor²}dr = q²/8πεoRe = ½mec
2 

for a classical velocity of ve=0 in a non-interacting magnetic field B=0. 2Ue=mec
2 so implies a 

halving of the classical electron radius to obtain the electron mass me=2Ue/c
2 and infers an 

oscillating nature for the electron size to allow a synergy between classical physics and that of 

quantum mechanics.  

  

(Continued in Part 3) 
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